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 Derivatives can be evaluated as a sum of its individual terms. 
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o In other words: If y varies with u and u varies with x, then
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o Think about this intuitively: if y is three times as fast as u and u is twice as fast as 

x, then y must be six times as fast as x. 

 

Further notes: 

 Leibniz’s Rule: Given that u and v are n times differentiable functions, 
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 The derivatives of the sine and cosine functions can be proven with the limit definition of 

the derivative with trigonometric summation properties using 
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 The derivatives of the other trigonometric functions can be derived from the derivative of 

the sine and cosine functions using product and quotient rule. 

 The derivatives of exponential functions can be proven with the definition of e. 

 Product rule, quotient rule, and chain rule can all be proven with the limit definition of 

the derivative. 

 


