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 Derivatives can be evaluated as a sum of its individual terms. 
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o In other words: If y varies with u and u varies with x, then
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o Think about this intuitively: if y is three times as fast as u and u is twice as fast as 

x, then y must be six times as fast as x. 

 

Further notes: 

 Leibniz’s Rule: Given that u and v are n times differentiable functions, 

 



n

k

knk

k

nn vuCuv
0

)()()()(  Note: this is just the generalization of the product rule. 

 The derivatives of the sine and cosine functions can be proven with the limit definition of 

the derivative with trigonometric summation properties using 
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 The derivatives of the other trigonometric functions can be derived from the derivative of 

the sine and cosine functions using product and quotient rule. 

 The derivatives of exponential functions can be proven with the definition of e. 

 Product rule, quotient rule, and chain rule can all be proven with the limit definition of 

the derivative. 

 


